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Resumo 

O mapeamento da cobertura do solo urbano pode ser executado por diferentes processos. 
Compararam-se seis processos em seis bairros de Rio Claro (São Paulo/ Brasil) quanto à concordância na 
quantificação dos diversos tipos de cobertura e quanto à acurácia na quantificação da cobertura arbórea. 
Os processos avaliados foram: Dot grid; Classificação Automática Supervisionada (CAS); CAS com uso do 
NDVI; Classificação Automática Não Supervisionada (CANS); CANS com uso do NDVI; e Vetorização 
aplicada à cobertura arbórea. Estes concordaram na quantificação dos tipos de cobertura com Kappa 
superior a 0,75. Avaliou-se a acurácia da quantificação da cobertura arbórea pelo teste de Tukey, não 
havendo diferenças significativas entre as médias dos processos em relação à Vetorização (dados de 
referência), exceto para CAS que apresentou média superestimada. A combinação do NDVI à imagem 
multiespectral aproximou as médias das classificações automáticas à da Vetorização, corrigindo inclusive 
a superestimativa mencionada. Avaliou-se o tempo de execução dos processos. 

Palavras-chave: Mapeamento da cobertura do solo urbano; Acurácia da quantificação da cobertura 
arbórea; Concordância entre processos de mapeamento. 

Abstract 

Mapping urban land cover can be performed by different processes. Six processes were compared in six 
neighborhoods of Rio Claro (Sao Paulo/ Brazil) regarding the agreement on the quantification of the 
various types of coverage and the accuracy of tree cover quantification. The evaluated processes were: 
Dot grid; Supervised Automatic Classification (CAS); CAS with NDVI; Automatic Not Supervised 
Classification (CANS); CANS with NDVI; Vectorization on tree cover. These methods were compatible with 
the quantification of the types of coverage with Kappa above 0.75. The accuracy of the tree cover 
quantification was evaluated by Tukey test, and there were no significant differences between means of 
the processes in relation to the vectorization (reference data), except for CAS, which presented an 
overestimated mean. The combination of the NDVI with the multispectral image approximated means of 
automatic classifications to that of the vectorization, correcting even the overestimation mentioned. The 
execution time of the processes was evaluated. 

Keywords: Urban land cover mapping; Accuracy of tree cover quantification; Agreement between 
mapping processes. 
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INTRODUÇÃO 

O mapeamento da cobertura do solo urbano fornece informações fundamentais para a 
compreensão da Ecologia Urbana. Esta cobertura pode ser separada em: áreas vegetadas - 
compostas por áreas de vegetação herbácea e pela cobertura arbórea (copa de árvores, 
arbustos e palmeiras); áreas impermeabilizadas - recobertas por asfalto, cimento e outros 
materiais dos pavimentos, assim como o solo exposto compactado e os telhados das 
construções; e reservatórios hídricos – como rios, represas, lagos e piscinas. 

A proporção dos tipos de cobertura resulta em fenômenos ambientais que afetam 
significativamente a vida. Excessiva impermeabilização, por exemplo, pode levar ao 
surgimento de ilhas de calor e à ocorrência de enchentes e deslizamentos. Por outro lado, a 
cobertura arbórea realiza funções como interceptação da água das chuvas e diminuição do 
run off, redução da poluição da água, filtragem e umidificação do ar, amenização da 
temperatura, portanto pode ser devidamente alocada para proporcionar conforto, saúde e 
segurança. Também está associada à presença de diversas espécies, servindo-lhes de habitat 
e corredor para passagem. 

Para o manejo da cobertura do solo urbano por meio de diagnósticos corretos e 
intervenções eficazes, torna-se necessária a utilização de técnicas que forneçam o 
mapeamento acurado, preferencialmente de baixo custo para possibilitar repetições que 
acompanhem o dinamismo da cidade (Miller, 1996). 

Antecede o mapeamento da cobertura, a aquisição de uma imagem da área, que pode 
ser obtida no nível suborbital (fotografias aéreas e videografia) ou no nível orbital (imagens 
de satélite). A imagem é produto da captura por parte de sensores das ondas 
eletromagnéticas refletidas pelos objetos na superfície terrestre e é caracterizada pela faixa 
do espectro eletromagnético armazenada em cada pixel e pela resolução espacial, que 
expressa o nível de detalhamento do solo. No contexto urbano, a resolução espacial 
geralmente deve ser alta devido ao tamanho diminuto dos alvos (Jensen, 2009). 

Na década de 60, difundiram-se os métodos vetoriais de mapeamento, nos quais os tipos 
de cobertura do solo eram separados por fotointerpretação, utilizando-se pontos, linhas, e 
polígonos para demarcar e delimitar feições. A princípio, eram executados em papel e 
aplicados principalmente a áreas rurais e naturais. Para áreas urbanas, devido à alta 
heterogeneidade da cobertura que aumenta drasticamente a quantidade de feições e as 
classes de cobertura, foram adaptados métodos nos quais a forma e o tamanho dos polígonos 
eram pré-determinados e depois o tipo de cobertura identificado, como o Dot grid Method. 

O Dot grid Method (Método da Grade de Pontos) envolve a fotointerpretação da cobertura 
encontrada sob pontos distribuídos sistematicamente numa imagem da área. A proporção de 
uma determinada cobertura corresponde ao número de pontos que cai sobre ela dividido 
pelo total de pontos na área. Nowak et al. (1996) analisaram as técnicas utilizadas para o 
levantamento de cobertura arbórea em 68 cidades norte-americanas e observaram que em 
42 delas havia sido utilizado o Dot grid. 

Na década de 80, a informática permitiu que os métodos vetoriais fossem executados 
com mais facilidade por meio dos sistemas de informação geográfica. Também possibilitou o 
surgimento dos métodos matriciais ou por raster, nos quais a interpretação digital ou 
automática de imagens multiespectrais é utilizada para identificação do padrão espectral dos 
pixels. Os primeiros softwares de geoprocessamento faziam apenas a interpretação digital, 
posteriormente possibilitaram a execução de métodos híbridos com entrada de informações 
de interpretação visual que aprimoraram muito o mapeamento (Moreira, 2011). 

A Classificação Automática Não Supervisionada (CANS) é um processo em que o software 
separa os pixels da imagem em grupos por faixa de assinatura espectral e posteriormente o 
intérprete determina a qual classe de cobertura cada grupo pertence por meio da similaridade 
de distribuição com a imagem. A Classificação Automática Supervisionada (CAS) segue o 
caminho inverso da CANS: o intérprete informa ao software quais os padrões espectrais dos 
tipos de cobertura por meio de pequenas amostras da imagem e o software classifica a 
imagem pixel por pixel (Moreira, 2011). 
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Nas classificações automáticas, o confundimento entre classes de cobertura ocorre 
quando suas assinaturas espectrais são próximas, dessa forma quanto maior a resolução 
espectral da imagem mais precisa é a separação. Por isso são utilizadas imagens 
multiespectrais, que contêm bandas na faixa visível do espectro eletromagnético (0,4 a 0,7 
µm) e na faixa do infravermelho próximo (0,7 a 1,1 µm) e médio (1,1 a 3,0 µm). A separação 
acurada da vegetação de outros tipos de cobertura, como asfalto e rios, só é possível devido 
à utilização da banda do infravermelho, pois as folhas absorvem a radiação 
fotossinteticamente ativa, que abrange a faixa do vermelho e do azul e refletem passivamente 
a faixa do verde, porém possuem mecanismos internos que fazem o infravermelho ser 
intensamente refletido, diferenciando-as dos demais materiais (Carleer et al., 2005). 

Com o intuito de ressaltar o comportamento espectral da vegetação foram criados 
índices baseados na álgebra de bandas, que podem ser combinados às imagens espectrais. 
O Normalized Difference Vegetation Index (NDVI), um dos mais difundidos, utiliza a banda do 
vermelho (R), na qual a vegetação aparece relativamente escura devido à absorção para 
fotossíntese, e a banda do infravermelho próximo (NIR), onde aparece clara devido à reflexão 
ativa. Quanto mais folhas a planta tem e mais vigorosas, mais esses comprimentos de onda 
são afetados, viabilizando diferenciar inclusive vegetação herbácea de cobertura arbórea 
(Weier & Herring, 2000). 

Neste artigo, processos de mapeamento do solo são comparados quanto à concordância 
na quantificação dos tipos de cobertura, à acurácia na quantificação da cobertura arbórea e 
ao tempo de execução. Os processos são: Dot grid; Classificação Automática Supervisionada; 
Classificação Automática Supervisionada com uso do NDVI; Classificação Automática Não 
Supervisionada; Classificação Automática Supervisionada com uso do NDVI; Vetorização, 
aplicada apenas à cobertura arbórea. 

MATERIAL E MÉTODOS 

Área de estudo 

Compreende quatro bairros contíguos (3,17 km2) do perímetro urbano de Rio Claro, São 
Paulo, delimitados de acordo com o zoneamento realizado pela Prefeitura Municipal em 2007 
(Figura 1). O Centro de Rio Claro foi o maior bairro analisado (1,84 km2) e foi dividido em três 
porções, também chamadas de bairro - Centro Norte (0,63 km2), Centro Médio (0,71 km2) e 
Centro Sul (0,50 km2) – para que os processos de mapeamento fossem aplicados em áreas de 
tamanhos próximos. Alto do Santana (0,5 km2) e Vila Operária (0,44 km2) são bairros ao norte 
do Centro e Cidade Nova (0,39 km2) a leste. A escolha dos bairros se baseou primeiramente 
na quantidade de cobertura arbórea, o Centro é visivelmente pouco arborizado em relação 
aos demais bairros. As particularidades são o lago do Parque Municipal localizado na Vila 
Operária e a maior quantidade de vegetação herbácea no bairro Cidade Nova. 

Os pontos extremos da área estão situados entre as latitudes 22º23’16” S e 22º25’26” S e 
as longitudes 47º33’03” O e 47º33’35” O; a elevação média do terreno é de 610 m em relação 
ao nível do mar. Na região, o clima é do tipo Cwa de acordo com a classificação de Köppen, 
caracterizado por temperatura média anual mínima de 15,1 °C e máxima de 28,0 °C, e por 
precipitação média de 1.366,8 mm por ano. As chuvas de verão acumulam acima de 600 mm 
entre dezembro e fevereiro, e durante a estiagem de inverno entre junho e agosto, chove 
menos de 100 mm (Centro de Pesquisas Meteorológicas e Climáticas Aplicadas à Agricultura, 
2013). Predominam Argissolos Vermelhos e Vermelhos-Amarelos e são encontrados 
Chernossolos e Neossolos Litólicos. A vegetação original é composta por Cerrado e Floresta 
Estacional Semidecidual. 
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Figura 1 - Área de estudo: À Esquerda. Localização do Município de Rio Claro no Estado de São Paulo 

(Brasil); Ao Centro. Destaque em cinza da área do Perímetro Urbano no Município de Rio Claro; À 
Direita. Bairros analisados: Alto do Santana (contorno em azul), Vila Operária (em amarelo), Centro 

Norte, Centro Médio e Centro Sul (em verde), Cidade Nova (em vermelho) 

Imagem de satélite da área de estudo 

Foi adquirida uma imagem multiespectral do satélite WorldView II (resolução espacial de 
0,5 m) composta pelas bandas do vermelho (R), verde (G), azul (B) e infravermelho próximo 
(NIR), fusionada, georreferenciada para WGS 1984 datum e sistema de coordenadas Universal 
Transversal Mercartor (UTM) Zona 23 Sul, e ortorretificada. Foi capturada em 27 de julho de 
2011, durante a estiagem de inverno, quando há menor oclusão pelas nuvens e a vegetação 
herbácea está menos vigorosa (exceto em áreas irrigadas). 

Foi combinada à imagem multiespectral uma banda NDVI obtida por meio da Calculadora 
Raster do software gratuito Quantum GIS (1.8.0) (Equação 1): 

( )
( )
NIR VIS

NDVI
NIR VIS

−
=

+
 (1) 

Onde VIS é a banda do vermelho (R) e NIR a banda do infravermelho próximo. Os valores de 
NDVI variam de -1 a 1, quanto mais próximo de 1, mais a VIS é refletida e não há vegetação, 
quanto mais próximo de +1 a NIR é refletida e há vegetação (National Aeronautics and Space 
Administration, 2000). 

Mapeamento da cobertura do solo urbano 

Para mapeamento da cobertura do solo urbano foram estabelecidas 12 classes de 
cobertura: cobertura arbórea, vegetação herbácea, lago, piscina, asfalto, cimento, solo 
exposto, telha cerâmica, telha cinza, telha metálica, sombra, outros (Silva Filho et al., 2005). 
Foram executados 6 processos de mapeamento do solo: (1) Vetorização, aplicada apenas à 
cobertura arbórea; (2) Dot grid; (3) Classificação Automática Supervisionada utilizando a 
imagem multiespectral (CAS); (4) Classificação Automática Supervisionada utilizando a 
imagem multiespectral combinada ao NDVI (CAS_NDVI); (5) Classificação Automática Não 
Supervisionada utilizando a imagem multiespectral (CANS); (6) Classificação Automática Não 
Supervisionada utilizando a imagem multiespectral combinada ao NDVI (CANS_NDVI). Para 
cada processo, foram calculadas as porcentagens dos tipos de cobertura e registrado o tempo 
de execução por bairro. Abaixo segue a descrição básica da execução dos processos: 
Vetorização: executada no software Quantum GIS (1.8.0). Para cada bairro foi estabelecido um 

projeto composto pela camada raster da imagem com exibição das bandas R, G, B (similar 
a uma fotografia aérea colorida), sobre a qual foi colocada uma camada vetorial. Nesta 
foram delimitados os polígonos da cobertura arbórea com as ferramentas de edição do 
software. 
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Dot grid: executado com auxílio do Quantum GIS (1.8.0), no qual foi construído um projeto 
para cada bairro formado por 3 camadas: i. a camada raster da imagem Worldview II 
multiespectral com exibição das bandas R, G, B; ii. uma grade vetorial composta por 
polígonos de 10 x 10 m; iii. uma camada de pontos regulares dispostos no centro dos 
polígonos da grade vetorial. Cada polígono da grade vetorial foi classificado de acordo 
com a cobertura do solo demarcada pelo ponto ao centro. 

Classificação Automática Supervisionada: executada no software gratuito Multispec (3.3), 
utilizando-se a imagem multiespectral e a imagem multiespectral combinada ao NDVI. 
Optou-se pela exibição das bandas NIR, G, B da imagem, na qual a vegetação é realçada 
pela coloração avermelhada (falsa cor), para visualização da área e seleção das amostras 
das classes de cobertura. No Multispec, podem ser fornecidos dois conjuntos de 
amostras chamados de treinador e de auditor. O auditor pode ser entendido como um 
segundo treinador, por meio do qual o software reclassifica os pixels da imagem e 
compara os resultados com aqueles do treinador. Foram fornecidas 5 amostras de cada 
classe de cobertura para o treinador e 5 para o auditor. O tamanho das amostras foi de 
3 x 3 pixels, porém quando a classe se apresentou muito fragmentada, foram 
selecionadas amostras menores. Os mesmos conjuntos de amostras foram utilizados 
para a classificação da imagem sem e com NDVI, por meio do algoritmo Maximum 
Likelihood. As estatísticas do software a partir do treinador e auditor foram utilizadas 
como parâmetro de qualidade, de forma que a classificação foi considerada satisfatória 
quando a Acurácia Geral e Estatística Kappa foram superiores a 80% e as acurácias das 
classes superiores a 50%. A comparação visual com a imagem também foi utilizada como 
indicativo da qualidade. 

Classificação Automática Não Supervisionada: executada no Multispec (3.3). Por meio do 
algoritmo Isodata, foram separados 24 clusters ou grupos de pixels por faixas de 
assinatura espectral. A assinatura espectral foi composta a priori pelas camadas R, G, B e 
NIR e posteriormente pelas camadas R, G, B e NIR combinadas ao NDVI (CANS e 
CANS_NDVI, respectivamente). Os clusters foram classificados por identificação visual de 
acordo com o tipo de cobertura de maior ocorrência e quando apresentavam duas 
classes ocorrendo paralelamente, o número de pixels do cluster foi dividido igualmente 
entre elas. 
Uma pessoa iniciante em geoprocessamento executou os processos para se avaliar a 

facilidade de assimilação e aplicação. O tempo de execução não foi registrado para a CAS_NDVI 
por utilizar os mesmos treinadores e auditores da CAS, e para CANS_NDVI, pois seria 
influenciado pela experiência adquirida pelo usuário ao executar a CANS. Obtiveram-se o 
tempo médio, mínimo e máximo, intervalo de confiança com 99% de probabilidade e 
coeficiente de variação. A área dos bairros transformada para 0,5 km2 e os tempos 
proporcionais utilizados para comparar Dot grid e da Vetorização. 

Nas classificações automáticas, foram observados os principais confundimentos entre 
classes. Devido à dificuldade de se separar as classes piscina de telha metálica, excluiu-se 
piscina, e de se separar solo exposto de telha cerâmica, separou-se solo exposto apenas em 
parte (Pereira-Rollo et al., 2012). 

Análise estatística 

Comparação dos processos envolvendo todas as classes de cobertura 

Na comparação entre os processos de mapeamento envolvendo todas as classes de 
cobertura, a Vetorização não foi incluída por abranger apenas a cobertura arbórea. Aplicou-
se a Estatística Kappa (K) estabelecida por Cohen (1960) para avaliar a concordância das 
porcentagens das classes obtidas entre pares de processos. Utilizou-se parte da matriz de 
erro (Tabela 1), na qual os totais marginais das linhas correspondem às porcentagens obtidas 
por um processo, os totais marginais das colunas às porcentagens de outro processo, e a 
diagonal às porcentagens que concordam entre os dois processos. Cálculo do Kappa (K): 
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Onde: oP  é a proporção de acordo observado (proporção da área que é classificada nas 
mesmas classes de cobertura pelos dois processos); aP  a proporção de acordo devida ao 
acaso; M, o número de classes presentes na matriz de erro; nii, a porcentagem da área 
categorizada na mesma classe (corresponde aos valores na diagonal da matriz); N, 
porcentagem da área contemplada pela matriz (no caso 100%); il  e ic  são as porcentagens 
de uma mesma classe obtidas pelos dois processos. 

Tabela 1 - Exemplo de matriz de erro acompanhada dos cálculos de acurácia e Estatística Kappa 
(Adaptado de Jensen, 2005) 

Dados de Referência 
Classificação Classe 1 Classe 2 Classe 3 Total da Linha 

Classe 1 8 1 3 12 

Classe 2 2 9 0 11 

Classe 3 0 0 7 7 

Total da Coluna 10 10 10 30 

( )              /     %AcuráciaGeral 8 9 7 30 80= + + =  

Acurácia do Produtor (Erro de Omissão) Acurácia do Usuário (Erro de Comissão) 

Classe 1 = 8/10 = 80% (20%) Classe 1= 8/12 = 67% (33%) 

Classe 2 = 9/10 = 90% (10%) Classe 2 = 9/11 = 82% (18%) 

Classe 3 = 7/10 = 70% (30%) Classe 3 = 7/7 = 100% (0%) 

Cálculo da Estatística Kappa ( K ) 

( ) ,o
8 9 7

P 0 8
30
+ +

= =  ( ) ( ) ( )* * *
,a 2

10 12 10 11 10 7
P 0 33

30

+ +  = =  

, , , %
,

o a

a

P P 0 8 0 33K 0 7 70
1 P 1 0 33
− −

= = = =
− −

 

Comparação dos processos envolvendo apenas cobertura arbórea 

Para comparação entre os processos quanto à quantificação da cobertura arbórea, cada 
bairro foi compreendido como uma repetição. A Análise de Variância (Fisher, 1918) foi 
utilizada para testar a hipótese nula de que não houve diferença entre os processos de 
mapeamento na obtenção das porcentagens de cobertura arbórea (H0: X vetor = X Dot grid = X

cas = X cas_NDVI = X cans = X cans_NDVI). Para que este teste estatístico seja usado, é necessário que: 
(1) as amostras sejam obtidas aleatoriamente; (2) os valores da variável tenham distribuição 
normal; (3) as variâncias dos processos de mapeamento sejam homogêneas. O primeiro 
pressuposto não foi observado, uma vez que os bairros foram pré-selecionados conforme a 
ocorrência de cobertura arbórea. Como consequência, o bairro foi incluído como uma das 
fontes de variação no cálculo do F (Tabela 2). O teste Box-Cox (Box & Cox, 1964) foi utilizado 
para indicar se o segundo e o terceiro pressupostos foram cumpridos ou se seria necessária 
uma transformação dos dados. No caso, os dados precisaram passar pela transformação 
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logarítmica ( lnX X′ = ) para apresentarem distribuição normal e homocedasticidade das 
variâncias. 

Tabela 2 - Equações do Quadro da Análise de Variância para variável Cobertura Arbórea 

Fontes da 
Variação GL SQ QM F calculado 

Processo (w – 1) ( )*
k 2

i i
i 1

l X X
=

−∑  SQprocesso / 
GLprocesso 

(QMprocesso + QMbairro) / 
QMres 

Bairro (n – 1) ( )*
n 2

i i
i 1

k X X
=

−∑  SQbairro / GLbairro  

Resíduo 
GLtotal – (GLprocesso+ 

GLbairro) 
SQtotal – (SQprocesso 

+ SQbairro) 
SQres / GLres  

Total N – 1 ( )i ik l 2
ij

i 1 j 1
X X

= =
−∑ ∑    

GL: graus de liberdade; SQ: soma dos quadrados das diferenças; QM: quadrado médio; w: número de processos (6); n: 
número de repetições, ou seja, de bairros (6); N: número de observações (n * w = 36); l : processo observado; k: bairro 
observado; i: contador 

Pela Análise de Variância, observou-se que houve diferença entre os processos para 
obtenção da cobertura arbórea (rejeitou-se H0), pois F calculado foi maior que o valor crítico 
de F igual a 5,03 para α = 5%, GLprocesso + GLbairro = 10, GLresíduo = 25. Na sequência, o teste de 
Tukey (Zar, 2010) foi utilizado para determinar entre quais pares de processos de 
mapeamento não houve diferença significativa (H0: X B = X A). Para tanto, as médias dos 
processos foram colocadas em ordem decrescente e foi calculada a diferença entre pares (

B AX X− ). Em seguida, calculou-se o erro padrão (EP): 

2sEP
n

=  (5) 

Onde: 2s  é a variância do resíduo ou QMres; n é o número de repetições ou bairros em cada 
processo (6). 

E calculou-se a diferença mínima significativa (Δ) a partir da amplitude estudentizada ou 
q tabelado: 

*q EP∆ =  (6) 

Onde: q é igual a 4,358 (para α = 5%, GLresíduo = 25, número de processos = 6). 
Rejeitou-se H0 para os pares de processos cuja diferença entre médias foi superior à 

diferença mínima significativa. A Vetorização foi utilizada como processo de referência para 
avaliação da acurácia dos demais processos por ser puramente baseada na fotointerpretação 
e na delimitação dos limites das classes. 

RESULTADOS E DISCUSSÃO 

Concordância entre processos de mapeamento (Estatística Kappa) 
A Estatística Kappa foi utilizada para avaliar a concordância entre processos de 

mapeamento abordando a equivalência entre eles na obtenção de porcentagem das classes 
de cobertura. Na matriz de erro foram incluídos os totais de porcentagem de classe de dois 
processos e as porcentagens de coincidência entre eles a partir de toda área dos bairros, em 
detrimento da verificação em campo de unidades amostrais e da localização dos erros de 
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omissão e comissão (Congalton, 1991; Jensen, 2005). Assim informações a respeito de 5 
processos de mapeamento executados em 6 bairros, portanto 60 pares de processos, 
puderam ser sumarizadas em uma única tabela (Tabela 3). 

Tabela 3 - Estatística Kappa (K) obtida entre processos de mapeamento do solo aplicados em 6 bairros 
de Rio Claro (SP), sendo o sistema de classificação: cobertura arbórea, vegetação herbácea, lago, piscina, 
asfalto, cimento, solo exposto, telha cerâmica, telha cinza, telha metálica, sombra e outros 

 Centro 
Norte 

Centro 
Médio 

Centro 
Sul 

Alto do 
Santana 

Cidade 
Nova 

Vila 
Olímpia 

Dot grid X CAS 0,8712 0,8362 0,8759 0,8675 0,9057 0,8816 

Dot grid X CAS_NDVI 0,8665 0,8380 0,8666 0,8392 0,8877 0,9028 

Dot grid X CANS 0,8231 0,8481 0,7648 0,8108 0,7613 0,8637 

Dot grid X CANS_NDVI 0,8162 0,8064 0,7853 0,8293 0,8226 0,8130 

CAS X CAS_NDVI 0,8974 0,9967 0,9606 0,9664 0,9776 0,9636 

CAS X CANS 0,8611 0,8443 0,8080 0,7508 0,7821 0,7798 

CAS X CANS_NDVI 0,8346 0,7944 0,8594 0,7976 0,8570 0,7957 

CAS_NDVI X CANS 0,8222 0,8462 0,8291 0,7528 0,8024 0,8007 

CAS _NDVI X CANS_NDVI 0,7880 0,7938 0,8564 0,7989 0,8793 0,7700 

CANS X CANS_NDVI 0,9463 0,8482 0,8515 0,8465 0,8700 0,8232 

CAS: Classificação Automática Supervisionada; CAS_NDVI: Classificação Automática Supervisionada com uso do NDVI; 
CANS: Classificação Automática Não Supervisionada; CANS_NDVI: Classificação Automática Não Supervisionada com 
uso do NDVI 

Observou-se 0,8007 ≤ K ≤ 0,9967 entre 46 pares (76,7%), nos 14 pares restantes (23,3%) 
0,7508 ≤ K ≤ 0,7989. Os pares formados por Dot grid, CAS ou CAS_NDVI apresentaram K > 0,8 
em todos os bairros, assim como os pares de CANS com CANS_NDVI. No entanto, quando 
CANS e CANS_NDVI foram pareados com Dot grid, CAS e CAS_NDVI, obtive-se K > 0,8 entre 22 
pares (61,1%) e 0,7508 ≤ K ≤ 0,7989 entre 14 pares (38,9%) (Tabela 3). 

Divisões arbitrárias dos valores de Kappa têm sido estabelecidas para padronizar as 
avaliações de concordância. Fleiss (2003), pesquisador do equacionamento da Estatística 
Kappa, estabeleceu a seguinte divisão: K > 0,75 - concordância excelente; 0,40 < K ≤ 0,75 - 
concordância satisfatória à boa; K ≤ 0,40 - concordância pobre. Landis & Koch (1977) sugeriram 
uma divisão mais rigorosa que se tornou popular: 0,8 < K < 1 - concordância quase perfeita; 
0,6 < K ≤ 0,80 - concordância substancial; 0 < K ≤ 0,60 - de pobre a moderada. Segundo Fleiss 
(2003), a concordância foi excelente entre todos os pares de processo. Para Landis & Koch 
(1977), a concordância foi quase perfeita entre 46 pares de processo (76,7%) e substancial 
entre os 14 pares restantes (23,3%). Como enfatizado, os valores de Kappa abaixo de 0,8 se 
concentraram nos pares de processo em que um dos constituintes era CANS ou CANS_NDVI e 
o outro Dot grid, CAS ou CAS_NDVI, especificamente em 38,9% dos pares assim configurados. 
De maneira generalizada, os processos podem ser considerados equivalentes na obtenção 
das porcentagens de classes de cobertura, apesar de as classificações automáticas não 
supervisionadas poderem apresentar menor concordância com os demais métodos. 

Observa-se que a discordância esteve presente entre todos os pares de processo (K ≠ 1), 
pois está associada a características dos processos de mapeamento dentre outros fatores 
(Figura 2). Neste sentido, o Dot grid tem como fonte de erro a extrapolação da classe sob o 
ponto para toda área da quadrícula, e é claro que quanto menor a quadrícula e a 
fragmentação da classe de cobertura, menor deve ser o erro. A presença periódica de uma 
determinada classe (por exemplo, o asfalto) também pode levar a erro, porém uma forma de 
evitá-lo é a aleatorização da posição do ponto na quadrícula (Nowak et al., 1996) (Figura 2b). 
Nas classificações automáticas, o refinamento da resolução espacial aumenta a variabilidade 
da reflectância dentro das unidades de cobertura do solo, que por sua vez reduz a 
separabilidade dentro do espaço espectral disponível. A diminuição da separabilidade tende 
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a reduzir a acurácia das classificações pixel a pixel, inclusive do algoritmo Maximum Likelihood 
(Carleer et al., 2005). No entanto, Hester et al. (2008) demonstraram que elas podem gerar 
mapas altamente precisos, apesar das sobreposições espectrais entre classes. 

 
Figura 2 – Mapeamento do solo urbano no bairro Alto do Santana (Rio Claro – SP, Brazil): a. Imagem 

Worldview II (0,5 m de resolução); b. Dot grid; c. Classificação Automática Supervisionada (CAS); d. 
Classificação Automática Supervisionada com uso do NDVI (CAS_NDVI); e. Classificação Automática Não 
Supervisionada (CANS); f. Classificação Automática Não Supervisionada com uso do NDVI (CANS_NDVI) 
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Confundimentos devido às sobreposições espectrais são reportados em literatura, como 
entre solo exposto e superfícies impermeáveis e entre tipos de vegetação (Thomas et al., 
2003; Hester et al., 2008). É claro que se as classes que se sobrepõem ocorrem em maior 
proporção, especificamente dentro da faixa espectral da sobreposição, o confundimento será 
mais intenso, sobressaindo o efeito sal pimenta (mistura de pixels de classes diferentes). 
Tratando-se da classificação automática supervisionada, em que as faixas espectrais de cada 
classe são informadas pelo usuário, pode haver situações em que seja possível separar uma 
das classes apenas em parte deixando os pixels da sobreposição para a outra, como optou-
se em fazer com o solo exposto em relação à telha cerâmica, ou simplesmente pode-se excluir 
uma delas se ocorrer em pequena proporção e seus pixels serão incorporados pela outra 
classe, caso da classe piscina em relação à telha metálica (Figura 2c, 2d). 

Por outro lado, nas classificações automáticas não supervisionadas, os clusters são 
estabelecidos a partir de faixas espectrais pré-definidas de amplitudes iguais que acabam por 
reunir classes diferentes com assinaturas espectrais próximas. Consequentemente, os 
confundimentos podem ser mais pronunciados, como o observado entre telha metálica e 
cimento, por as classes ocorrerem concomitantemente em alguns clusters, assim optou-se por 
dividir os pixels entre elas (Figura 2e, 2f). O procedimento convencional é aumentar o número 
de cluster, porém apenas dividir os pixels do cluster entre as classes foi muito mais prático. 
Como a cobertura do solo urbano é muito heterogênea, mais clusters podem aumentar a 
dificuldade do usuário em determinar as classes ao invés de resolver a confusão entre elas. 
Certamente os confundimento terão importância de acordo com os objetivos do 
levantamento, sendo assim, supondo-se que se deseja estimar a quantidade e distribuição da 
cobertura arbórea, confundimentos que não envolvam esta classe serão pouco relevantes. 

Diversas alternativas para lidar com a lacuna de resolução espectral que leva às 
sobreposições de classes nas imagens de alta resolução espacial e aos confundimentos nas 
classificações estão em desenvolvimento. Associações de técnicas podem ser utilizadas, como 
por exemplo, vetorização de um tipo de cobertura seguida de classificação automática do 
restante da imagem, uso paralelo de classificação automática e lidar, dentre outras 
(Hester et al., 2008; Tooke et al., 2009). Análises orientadas a objeto, que incorporam 
informações sobre textura, forma, contexto, além do padrão espectral, têm se mostrado 
consistentes nos levantamentos de cobertura do solo, porém são técnicas ainda em estudo e 
disponíveis a alto-custo (Trimble, 2013). Pode-se optar pelo uso de filtros que suavizam a 
heterogeneidade de reflectância dos objetos na imagem (Hall, 2007). E há também os índices 
baseados na álgebra de bandas que podem ampliar e realçar informações espectrais, e 
consequentemente, melhorar as classificações automáticas (Zha et al., 2003; Sawaya et al., 
2003). 

Acurácia da quantificação da cobertura arbórea 
Os processos de mapeamento a cerca apenas da cobertura arbórea (%) foram 

comparados por Análise de Variância. F calculado foi igual a 35,55, superior ao valor crítico de 
F (F5%,10,25 = 5,03; valor-p < 0,001), portanto rejeitou-se a hipótese nula de que não havia 
diferença significativa entre as médias de cobertura arbórea obtidas pelos processos de 
mapeamento do solo (H0: X Dot grid = X cas = X cas_NDVI = X cans = X cans_NDVI = X vetor) (Tabela 4). 

Tabela 4 - Quadro da Análise de Variância para variável Cobertura Arbórea (%) 

Fontes da 
Variação 

GL SQ QM F calculado Valor-p 

Processo 5 0,893 0,178 37,55 <0,001 

Bairro 5 5,407 1,082   

Resíduo 25 0,419 0,017   

Total 35 6,720    

GL: graus de liberdade; SQ: soma dos quadrados das diferenças; QM: quadrado médio 
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A partir do teste de Tukey, avaliou-se a diferença entre as médias de cobertura arbórea 
dos processos de mapeamento, sendo a diferença mínima significativa (Δ) igual a 0,2305. 
Assim formaram-se 4 grupos de médias e apenas a CAS apresentou diferença significativa em 
relação à Vetorização (Tabela 5). 

Tabela 5 - Grupos de Média de Tukey para a variável Cobertura Arbórea (%) 

Grupos de Média de Tukey Média Processo 

 A  2.57605 CAS 

B A  2.48773 Dot grid 

B A C 2.45749 CAS_NDVI 

B D C 2.30420 Vetorização* 

 D C 2.24076 CANS_NDVI 

 D  2.11690 CANS 

CAS: Classificação Automática Supervisionada; CAS_NDVI: Classificação Automática Supervisionada com uso do NDVI; 
CANS: Classificação Automática Não Supervisionada; CANS_NDVI: Classificação 

A partir da pressuposição tradicionalmente aceita de que a fotointerpretação é correta 
(Congalton, 1991), a Vetorização da cobertura arbórea pode servir como dado de referência 
para aferir a consistência da quantificação da cobertura arbórea pelos demais processos. 
Ainda se baseando naquela pressuposição, fica explicado porque o Dot grid quantificou 
acuradamente a cobertura arbórea, não se diferenciando significativamente da Vetorização, 
apesar da extrapolação da classe sob o ponto para toda área da quadrícula. 

Nas classificações automáticas, com a incorporação da banda do infravermelho próximo 
nas imagens de sensoriamento remoto, tornou-se mais precisa a separação da cobertura 
vegetal dos demais tipos de cobertura do solo. No entanto, a sobreposição espectral entre 
classes de cobertura vegetal permaneceu sendo um desafio. Neste experimento, ocorreram 
confundimentos principalmente entre vegetação herbácea, árvores isoladas e árvores da 
periferia dos aglomerados, que podem ser explicados pelo menor volume de folhas das 
árvores em ambas as condições e ao maior vigor da vegetação herbácea em algumas áreas, 
resultando em uma reflectância do infravermelho próximo semelhante entre elas. Por isso a 
média da CAS acabou se afastando da média da Vetorização e se apresentou superestimada, 
no entanto foi semelhante à média do Dot grid e da CAS_NDVI. 

A adição da banda do NDVI à imagem multiespectral se mostra vantajosa por possibilitar 
ampliar e enfatizar informações espectrais de forma simples e sem custos adicionais. No caso, 
a utilização do NDVI corrigiu a superestimativa da CAS e melhorou o desempenho da CANS, a 
ponto de apresentar a média mais próxima à da Vetorização que o próprio Dot grid. 

Tempo de execução dos processos de mapeamento 

Tradicionalmente a fotointerpretação é aceita como correta (Congalton, 1991), no 
entanto, quanto mais o método depende dela, mais tempo é necessário para sua execução. 
À vista disso, a interpretação digital utilizada nos processos híbridos proporciona a redução 
desse tempo, porém imagens multiespectrais de alto custo são necessárias para a separação 
acurada das classes. 

Observou-se que o Dot grid se mostrou moroso ( x  = 13,18 h/bairro), enquanto as 
classificações automáticas foram executadas em curto espaço de tempo ( x  = 1,75 h/bairro 
para CAS; x  = 1,04 h/bairro para CANS). O alto valor do CV da CAS em relação à CANS (61,18% 
e 18,60%, respectivamente) demonstra que a primeira requer maior tempo para assimilação 
pelo usuário, principalmente na capacidade de seleção de amostras das classes. Com certo 
treino, a CAS pode ser executada em períodos tão curtos quanto à CANS (Mín.= 0,75 h para 
CAS; Mín.= 0,73 h para CANS) (Tabela 6). 
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Tabela 6 - Estatísticas do tempo de execução dos processos de mapeamento da cobertura do solo 
urbano (os tempos da Vetorização e do Dot grid foram estabelecidos a partir da aproximação da área dos 
bairros para 0,5 km2) 

Processo de Mapeamento x  (h) Mín. (h) Máx. (h) IC (99%) CV (%) 
Vetorização* 3,50 1,91 4,66 3,50 ±2,21 30,75 

Dot grid * 1,89 0,88 2,81 1,98 ± 1,89 46,55 
Dot grid 13,18 11,23 14,56 13,18 ±3,06 11,28 

CAS 1,75 0,75 3,50 1,75 ±1,77 61,38 
CANS 1,04 0,73 1,10 1,04 ±0,32 18,60 

Onde: x : média; Mín.: valor mínimo observado; Máx: valor máximo observado; IC: Intervalo de Confiança; CV: 
Coeficiente de Variação; CAS: Classificação Automática Supervisionada; CANS: Classificação Automática Não 
Supervisionada; * Aplicada (o) apenas à cobertura arbórea 

Comparando-se Vetorização e Dot grid aplicados apenas à cobertura arbórea, observa-se 
que o tempo de execução médio do primeiro processo foi de 3,5 h/bairro enquanto do 
segundo foi 1,89 h/bairro, pois a Vetorização requer que o usuário desenhe cada polígono. 
No Dot grid basta selecionar as quadrículas que representam a classe. O CV para ambos foi 
alto (30,75% e 46,55%, respectivamente), devido principalmente às diferenças na quantidade 
de cobertura arbórea entre bairros (Tabela 6). 

CONCLUSÃO 

Os processos de mapeamento aplicados à cobertura do solo urbano se mostraram 
equivalentes na quantificação das diferentes classes de cobertura de acordo com a Estatística 
Kappa (K). Os pares formados por Dot grid e classificações automáticas supervisionadas 
apresentaram maior concordância (K > 0,8) que os pares formados por um desses processos 
com as classificações automáticas não supervisionadas (K > 0,75). Vale ressaltar que as 
classificações automáticas não supervisionadas foram executadas de forma diferenciada da 
convencional, quando se dividiu o número de pixels entre classes que ocorreram 
concomitantemente no cluster. 

Quando os processos foram avaliados apenas quanto à quantificação da cobertura 
arbórea, tendo a Vetorização como dado de referência, apenas a média da Classificação 
Automática Supervisionada se mostrou superestimada pelo teste de Tukey. As médias da 
classificação automática supervisionada e não supervisionada se aproximaram da média da 
Vetorização quando o NDVI foi combinado à imagem multiespectral, inclusive proporcionando 
a correção da superestimativa. Portanto o NDVI foi útil para ampliar e realçar as informações 
espectrais da imagem, melhorando a acurácia das classificações automáticas. 

Na decisão pelo processo de mapeamento a ser aplicado, deve-se levar em consideração 
o tempo, os recursos financeiros disponíveis e o custo para execução. Nas áreas urbanas 
estudadas de aproximadamente 0,5 km2, os métodos de fotointerpretação (Dot grid e 
Vetorização) demandaram maior tempo de execução que os métodos híbridos. Porém podem 
ser executados com imagens de menor custo, por exemplo, fotografias aéreas digitalizadas, 
mesmo em preto e branco. Já os processos híbridos dependem de imagens multiespectrais 
com a banda do infravermelho próximo, que são obtidas com tecnologias ainda onerosas, 
para fornecer dados precisos. 

Os softwares gratuitos apresentaram bom desempenho durante sua utilização, porém 
sua eficiência poderá ser diferente para aplicação em imagens de áreas maiores que 0,70 km2. 
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